

LA-UR-21-25451

Approved for public release; distribution is unlimited.

Title: Unsplit Hydro in EAP Codes

Author(s): Dolence, Joshua C.

Intended for: Report

Issued: 2021-06-10

Unsplit Hydro in EAP Codes

Josh Dolence

Team: J. M. Campbell, A. B. Isner, S. W. Jones,

T. Masser, C. D. Meyer, J. Velechovsky

June 9, 2021

Hydro in EAP Codes

Gases, liquids, and collisional plasmas

"Advection" for other physics packages

Solids, including the evolution of internal stresses

What is "Unsplit" Hydro?

Other options in EAP codes use directional splitting

Unsplit hydro is directionally unsplit (updates in all directions simultaneously).

Motivations

- Directional splitting thought to cause problems
 - Symmetry
 - Solid Mechanics
- Directional splitting definitely does have limits
 - -MHD
- Other hydro solvers in EAP codes are unique
 - Forced isolation from the rest of the hydrodynamics community
 - Only a few people in the world really understand the method and its special sauce
 - Onboarding new scientists slow

What is Unsplit Hydro?

- Basic scheme is a "finite volume, direct Eulerian, directionally unsplit, higher-order Godunov-type" hydro that uses the "method of lines"
- Finite volume Evolve cell-averaged quantities
- Direct Eulerian No mesh motion, real or imagined
- Higher-order Cell-averaged quantities are reconstructed with polynomials to better approximate the state as needed
- Godunov-type Riemann problems are solved to define intercell fluxes
- Method of lines A generic and powerful approach to evolving PDEs by discretizing space and using well-developed ODE solvers

"Default" and "Unsplit" hydrodynamics solvers are very different, even in 1D.

Unsplit Hydro Key Ingredients

Three core components have options that control accuracy/stability.

Extensible to incorporate future improvements!

Linear Acoustic Modes: A Basic, but Powerful Test of Correctness

In 1D we model a **single** wavelength on a periodic domain

In 2D and 3D, we rotate the setup to follow the multidimensional evolution

Unsplit Hydro is implemented correctly

Unsplit Hydro converges as expected in multi-D

Sedov Explosion: A Classic Test for Symmetry and "Carbuncles"

A spherically symmetric blast wave

Unsplit preserves symmetry much better than Default and suppresses the Carbuncle

Material Interface Advection: A Simple Test of Numerical Mixing and Interface Position

Unsplit captures fluid behavior accurately independent of Mach number

Taylor-Green Vortex: A Transition to Turbulence

3D structured vortical flow transitions to turbulence that decays over time

Unsplit dramatically improves our ability to model turbulent flows

Unsplit is enabling better modeling of fluid experiments

Elastic-Plastic Shear in a Solid: Simple Solid Dynamics Problem to Quantify Accuracy

Initial Conditions

Unsplit Hydro appears to more sharply capture shear waves in solids

Unsplit Hydro proves dramatically more accurate

A rapidly rotating solid disk held together by tensile stresses

Initial Conditions

8x higher resolution in Default is still much less accurate than Unsplit

Unsplit

Default

Oscillating Beryllium Beam: A simple but powerful discriminator for elastic solids

Unsplit dramatically improves fidelity of oscillating beam undergoing simultaneous compression, tension, and shear despite diffuse interface

Shaped Charge: A complex multiphysics problem that highlights gaps

Shaped Charge: Robustness required suboptimal solver options in 3D

We were able to complete a 3D shaped charge calculation, but the more robust solver options produce excessive numerical diffusion

Radiation advection reveals critical importance of consistent coupling with other physics packages

ICF Proxy stress tests HEDP capabilities

- 1d, 2d and 3d Multiphysics problem
- Hydrodynamics
- Radiation
- Multi-material
- Ionization/Isotopes
- 3T
- Electron/ion conduction
- Electron-ion coupling

0.05% of DT begins burning into ⁴He at 8 ns (simple energy deposition w/ linear ramp)

Unsplit and Default look very similar for this complex multiphysics problem

Quantitatively similar results when Default has 2x higher resolution. 24=16

3D implosion remains very symmetrical and in good quantitative agreement with 1D and 2D

Summary Assessments

- Unsplit hydro was demonstrated to have comparable or better accuracy across a broad range of problems, with some dramatic improvements
- The shaped charge revealed some deficiencies related to numerical mixing and the PTE mixed cell closure that must be resolved before widespread adoption among users is possible
- Focus of ongoing work has three prongs
 - Introduce a method to retain sharp material interfaces
 - Relax the assumption of PTE in mixed cells
 - Production hardening

Ongoing Work in Unsplit Hydro: Sharp Interfaces and non-PTE

Unsplit hydro actually began as a non-PTE solver

Definite progress
on sharp
interfaces in
Unsplit

Ongoing Work Leveraging Unsplit Hydro: Resistive Magnetohydrodynamics

MHD demands a directionally unsplit method

Unsplit is extending the physics reach of EAP codes

Resistive, Reconnecting Current Sheet

MHD Blast w/ AMR

Ongoing Work Leveraging Unsplit Hydro: Hyperelastic Material Modeling

Advanced material models often adopt a hyperelastic formulation, as opposed to the hypoelastic formulation EAP codes have always relied upon

Unsplit can naturally accommodate hyperelastic models and we have already explored a proof of principle

Thanks!